
Introduction to Static Analysis

Dependable Software Laboratory

http://cse.konkuk.ac.kr/

Static Analysis

• Static analysis is the process of examining source code prior to compilation

– Without executing

• Static analysis can diagnose for:

– Quality aspects such as maintainability, reliability, understandability and complexity

– Testing issues

– Coding standard compliance issues

– Best programming practices and unsafe programming constructs and coding defects

2

http://cse.konkuk.ac.kr/

Static Analysis

• Analyze the program without executing it

– Doesn’t depend on having good test cases or even any test cases

– Generally, doesn’t know what your software is supposed to do

– Looks for violations of reasonable programming

– Not a replacement for testing

– Very good at finding problems on untested paths

– But many defects can’t be found with static analysis

– False alarm occurs

•Generally 30%

3

http://cse.konkuk.ac.kr/

A position of the Static Analysis in Verification

• Verification Trade-off Dimensions

4

http://cse.konkuk.ac.kr/

Static Analysis

• Static analysis can be divided 3 levels

• Level 1: syntax checking of the source code

– Rule checking, coding style checking

• Level 2: quality analysis with translated source code to CFG/DFG form

– Sematic analysis, complexity analysis

• Level 3: static analysis, analyzing critical errors which can be issued during
execution

– Divided by zero, NULL pointer, Etc.

5

http://cse.konkuk.ac.kr/

Level 1

• Rule checking, coding style checking

• Syntax checking by IDE (e.g. eclipse, visual studio) is a kind of static analysis

• Several kinds of rules

– Simple rule checking

•E.g. Brace location, tab, Etc.

– Safe coding rule checking

•T. A., R.W. WITTY, “SAFE PROGRAMMING,” 1978

– Safe specification and programming(coding) is the simplest way to improve software reliability

– Proposing several rules for safe software (safe programming)

– E.g. infinite loop checking with counter, protecting buffer overflow code

• It is useful for coding style checking when working as a team

– Readability

– Maintainability

6

http://cse.konkuk.ac.kr/

Level 2

• Kinds of complexity, coverage, depend metrics

– Using CFG (Control Flow Graph), DFD (Data Flow Graph), Etc.

7

http://cse.konkuk.ac.kr/

Level 2

• Source code information and dependency graph

– E.g. Cyclomatic Complexity

8

http://cse.konkuk.ac.kr/

Cyclomatic Complexity

• Cyclomatic complexity is a software metric (measurement), used to indicate the
complexity of a program. It is a quantitative measure of the number of linearly
independent paths through a program's source code. It was developed by Thomas J.
McCabe, Sr. in 1976.

• Cyclomatic complexity is computed using the control flow graph of the program:
the nodes of the graph correspond to indivisible groups of commands of a
program, and a directed edge connects two nodes if the second command might
be executed immediately after the first command. Cyclomatic complexity may also
be applied to individual functions, modules, methods or classes within a program.

• One testing strategy, called basis path testing by McCabe who first proposed it, is
to test each linearly independent path through the program; in this case, the
number of test cases will equal the cyclomatic complexity of the program.

9

http://cse.konkuk.ac.kr/

Cyclomatic Complexity

• Lower is better. A McCabe complexity under 5 is good, from 5-10 is OK, and over
10 is too complex. A high flow complexity may be a symptom of a function which
does too much or has low cohesion (does to many different things). But don't take
these numbers too seriously -- you may have comprehensible control flow despite
high numbers. For example, one large switch statement can be clear to understand,
but can dramatically increase the count.

• 23 is too high

10

http://cse.konkuk.ac.kr/

Level 3

• Static analysis

– analyzing critical errors which can be issued during execution

– Without execution(compile)

11

http://cse.konkuk.ac.kr/

Automated Static Analysis

• There are several tools for static analysis of source codes

– Commercial

•Powerful tool is too expensive

– Open source

•Several open source tools exist also

12

http://cse.konkuk.ac.kr/

Tools

13

http://cse.konkuk.ac.kr/

Tools

14

http://cse.konkuk.ac.kr/

Tools

15

http://cse.konkuk.ac.kr/

Eclipse Metrics Plugin

• Level 2

• Install

– Help -> Install New Software -> Add

-> input the location (http://metrics2.sourceforge.net/update/)

16

http://cse.konkuk.ac.kr/

Eclipse Metrics Plugin

17

http://cse.konkuk.ac.kr/

Eclipse Metrics Plugin

• 각 project -> properties -> Metrics -> enable

18

http://cse.konkuk.ac.kr/

Eclipse Metrics Plugin

• Window -> Show View -> Metrics -> Metrics View

19

http://cse.konkuk.ac.kr/

Eclipse Metrics Plugin

20

http://cse.konkuk.ac.kr/

Eclipse Metrics Plugin

• Complexity, code line, 상속 관계 등

21

http://cse.konkuk.ac.kr/

Eclipse Metrics Plugin

• Dependency Graph

22

http://cse.konkuk.ac.kr/

PMD

• Level 1+Level 3 (part of)

• PMD is a source code analyzer. It finds common programming flaws like unused
variables, empty catch blocks, unnecessary object creation, and so forth. It supports
Java, JavaScript, Salesforce.com Apex and Visualforce, PLSQL, Apache Velocity, XML,
XSL.

• Additionally it includes CPD, the copy-paste-detector. CPD finds duplicated code in
Java, C, C++, C#, Groovy, PHP, Ruby, Fortran, JavaScript, PLSQL, Apache Velocity,
Scala, Objective C, Matlab, Python, Go, Swift and Salesforce.com Apex and
Visualforce.

23

http://cse.konkuk.ac.kr/

PMD

• Install

– Install new software -> https://dl.bintray.com/pmd/pmd-eclipse-plugin/updates/

24

http://cse.konkuk.ac.kr/
https://dl.bintray.com/pmd/pmd-eclipse-plugin/updates/

PMD

25

Priority
filtering

Violations Violations with code
overview

http://cse.konkuk.ac.kr/

PMD

• 이외에도 dataflow, CPD (Finding duplicated code) 가 가능

26

http://cse.konkuk.ac.kr/

PMD

• Method 별 data flow

27

http://cse.konkuk.ac.kr/

PMD

• Report example

– User can select the form of the report

28

http://cse.konkuk.ac.kr/

PMD

• Window -> Preference -> PMD -> Rule Configuration

– 사용할 rule set 설정

– 새로운 rule 추가 가능

29

http://cse.konkuk.ac.kr/

Checkstyle

• Level 1

• Checkstyle is a development tool to help programmers write Java code that adheres
to a coding standard. It automates the process of checking Java code to spare
humans of this boring (but important) task. This makes it ideal for projects that
want to enforce a coding standard.

• Checkstyle is highly configurable and can be made to support almost any coding
standard. An example configuration files are supplied supporting the Sun Code
Conventions, Google Java Style.

30

http://cse.konkuk.ac.kr/
http://www.oracle.com/technetwork/java/javase/documentation/codeconvtoc-136057.html
http://checkstyle.sourceforge.net/reports/google-java-style-20170228.html

Checkstyle

• Install

– Install New Software -> http://eclipse-cs.sf.net/update/

• Properties

– Activation

– Rule configuration

31

http://cse.konkuk.ac.kr/
http://eclipse-cs.sf.net/update/

Checkstyle

• Rule configuration

– 기본적으로 google, sun의 coding style 제공

– 여러 style을 선택 가능

• User define rule also available

32

http://cse.konkuk.ac.kr/

Checkstyle

• Naming Convention example

33

http://cse.konkuk.ac.kr/

Checkstyle

• Other rule example

34

http://cse.konkuk.ac.kr/

Checkstyle

• Activate example

35

Violation 부분을 표시

http://cse.konkuk.ac.kr/

FindBugs

• Level 3

• It is an open source program which looks for bugs in Java code

– Operates on Java bytecode, rather than source code

– Source code also available

36

http://cse.konkuk.ac.kr/

FindBugs

• Install

– Install new software -> http://findbugs.cs.umd.edu/eclipse

• project -> properties -> Findbugs -> enable

37

http://cse.konkuk.ac.kr/
http://findbugs.cs.umd.edu/eclipse

FindBugs

• Detector configuration

– Searching rule setting

•Enable/disable

38

http://cse.konkuk.ac.kr/

FindBugs

• Example - InfiniteLoop

39

http://cse.konkuk.ac.kr/

FindBugs

• Report setting

– Report로 생성할 항목들 설정 등

40

http://cse.konkuk.ac.kr/

FindBugs

• Execution

– Find Bugs click

• XML generation is possible

41

http://cse.konkuk.ac.kr/

FindBugs

42

Explorer

http://cse.konkuk.ac.kr/

JDepend

• Level 2

– Help -> Eclipse Marketplace -> jdepend 입력후 검색

43

http://cse.konkuk.ac.kr/

JDepend

• Source code가 있는 폴더 선택 후 JDepend run

44

http://cse.konkuk.ac.kr/

JDepend

• CC :: Concrete Class 인터페이스나 추상 클래스가 아닌 Concrete Class 의 수를 나타냄

• AC :: Abstract Class 추상 클래스나 인터페이스의 수를 나타내며 확장성의 척도가 됨

• Ca :: Afferent Couplings 현재 패키지의 클래스에 의존하고 있는 패키지의 수를 나타내며 책임의
척도가 됨

• Ce :: Efferent Couplings 현재 패키지의 클래스들이 의존하고 있는 패키지의 수를 나타내며 독립성
의 척도가 됨

• A :: Abstractness (A = AC/CC+AC) 추상화 정도를 나타내며, 0 은 구체적인 패키지를, 1 은 추상적
인 패키지를 나타냄

• I :: Instability (I = Ce(Ce+Ca)) 변화에 대한 안정성을 나타내며 0 부터 1 사이의 값을 가짐, 0 은
외부 변화에도 끄떡 없는 패키지이며 1 은 작은 변화에도 쉽게 흔들릴 수 있는 패키지를 나타냄

• D :: Distance to Main Sequence Main Sequence 로부터의 거리를 나타내며, 0 은 Main Sequence
와 완전 가깝고 1 은 완전 먼 상태임, Main Sequence란 이상적인 패키지로 완전 추상적이면서 안
정적이거나 완전 구체적이면서 불안정한 패키지를 나타냄

• Cycle :: Package dependency cycles 패키지들 상호 간에 의존성을 가지고 있을 때 발생함, 안 좋은
상황이기 때문에 경고 아이콘으로 보여짐

45

http://cse.konkuk.ac.kr/

SonarQube

• 이것도 한번 사용해 보세요

46

http://cse.konkuk.ac.kr/

발표 – Static Analysis

• 각자 서로 team의 source code를 대상으로 static analysis를 수행, 결과 발표

– 3개의도구 선택 (복잡도 or 의존성 분석 도구 1개 반드시 포함)

– 설명한 도구를 포함해 많은 도구들 중 자유롭게 선택

– 분석 결과 중 critical 한 부분들에 대한 분석발표

47

1 4, 3

2 4, 1

3 1, 2

4 2, 3

5 8, 7

6 8, 5

7 5, 6

8 6, 7

http://cse.konkuk.ac.kr/

